
Writing and compiling
larger programs

Lecture 04.02

Given perfectly valid program
float total = 0.0;
short tax_percent = 6;

float add_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val;
printf("Price of item: ");
while (scanf("%f", &val) == 1) {

printf("Total so far: %.2f\n",
add_with_tax(val));

printf("Price of item: ");
}
printf("\nFinal total: %.2f\n", total);
return 0;

}

Change the order: it does not
compile

float total = 0.0;
short tax_percent = 6;

float add_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val;
printf("Price of item: ");
while (scanf("%f", &val) == 1) {

printf("Total so far: %.2f\n",
add_with_tax(val));

printf("Price of item: ");
}
printf("\nFinal total: %.2f\n", total);
return 0;

}

totaller.c:23: error: conflicting types for "add_with_tax"
totaller.c:14: error: previous implicit declaration of
"add_with_tax" was here

The logic of GCC
float total = 0.0;
short tax_percent = 6;

float add_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val;
printf("Price of item: ");
while (scanf("%f", &val) == 1) {

printf("Total so far: %.2f\n",
add_with_tax(val));

printf("Price of item: ");
}
printf("\nFinal total: %.2f\n", total);
return 0;

}

Hey, here’s a call to a function I’ve
never heard of. But I’ll keep a note of
it for now and find out more later.
I bet the function returns an int.
Most do.

Change the order: it does not
compile

float total = 0.0;
short tax_percent = 6;

float add_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val;
printf("Price of item: ");
while (scanf("%f", &val) == 1) {

printf("Total so far: %.2f\n",
add_with_tax(val));

printf("Price of item: ");
}
printf("\nFinal total: %.2f\n", total);
return 0;

} A function called add_with_tax() that
returns a float???
But in my notes it says we’ve already
got one of these returning an int…

add_with_tax()
returns int

The order of functions
matters to GCC
int do_whatever(){...}

float do_something_fantastic (int awesome_level) {...}

int do_stuff() {

do_something_fantastic(11);

}

Keeping the order is painful

int do_whatever() {

do_something_fantastic(11);

}

float do_something_fantastic (int awesome_level) {...}

int do_stuff() {

do_something_fantastic(11);

}

And sometimes impossible

float ping() {

...

pong();

...

}

float pong() {

...

ping();

...

}

If you have two functions that call each other, then one of them
will always be called in the file before it’s defined

Solution: split the declaration and
the definition
• Explicitly tell to the compiler what functions to expect

• When you tell the compiler about a function, it’s called a
function declaration:

float add_with_tax();

Function declaration does not have the body!

No assumptions –the code compiles
float total = 0.0;
short tax_percent = 6;
float add_with_tax(float f);

float add_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val;
printf("Price of item: ");
while (scanf("%f", &val) == 1) {

printf("Total so far: %.2f\n",
add_with_tax(val));

printf("Price of item: ");
}
printf("\nFinal total: %.2f\n", total);
return 0;

}

Put declarations into a header file

• The declaration is just a function signature: name,
parameters, and the type of return

• Once you’ve declared a function, the order of function
definitions is not important

• But even better: take that whole set of declarations out of
your code and put them in a header file

Header files. Include

• Create a new file totaller.h:

float add_with_tax(float f);

• Include your header file in your main program

#include <stdio.h>

#include "totaller.h"

...

• When the preprocessor sees the #include in the code, it
copies its text into the source file

• To fully understand how it works, we need to look at…

Four steps of compilation

Preprocessing: fix the source
Adds any extra header files it’s been told
about using the #include directive.
Expands or skips over some sections of
the program.

Compilation:
translate into assembly
Converts the C source code into assembly
language: converts an if statement or a
function call into a sequence of assembly
language instructions.

Assembly:
generate the object code
Assembles the symbol codes into machine
or object code. This is the actual binary
code that will be executed by the circuits
inside the CPU. If you give the computer
several files to compile for a program, it
will generate a piece of object code for
each source file.

Linking: put it all together
Fits pieces of object code together to
form the executable program. The
compiler will connect the code in one
piece of object code that calls a function
in another piece of object code

movq -24(%rbp), %rax
movzbl (%rax), %eax
movl %eax, %edx

1

2

3

4

Sharing functions
among different files
• Example: 2 specs

Read the contents of a
file and create an
encrypted version using
XOR encryption.

file_hider
Read a series of strings
from the Standard Input
and display an encrypted
version on the Standard
Output using XOR
encryption

message_hider

void encrypt(char *message)

XOR encryption

• Very simple way of disguising a piece of text by XOR-ing
each character with some value

• The same code that can encrypt text can also be used to
decrypt it.

void encrypt(char *message) {

char c;

while (*message) {

*message = *message ^ 31;

message++;

}

}

0 0 0

0 1 1

1 0 1

1 1 0

0 0 0

0 1 1

1 0 1

1 1 0

Share functions through header

• If you are going to share the encrypt.c code between
programs, you need some way to tell those programs about
it

• You do that with a header file encrypt.h:

void encrypt(char *message);

• Include encrypt.h in both programs

Sharing code through linking

• Having encrypt.h inside the main program will mean the
compiler will know enough about the encrypt() function to
compile the code

• At the linking stage, the compiler will be able to connect the
call to encrypt(msg) in message_hider.c to the actual
encrypt() function declared in encrypt.h.

• Finally, to compile everything together you just need to pass
the source files to gcc:

gcc message_hider.c encrypt.c -o message_hider

Sharing variables

• Source code files normally contain their own separate
variables

• If you want to share variables, you should declare them in
your header file and prefix them with the keyword extern:

extern int passcode;

Summary: sharing code

• You can modularize code by dividing it between multiple C
files

• Put the function declarations in a separate .h header file

• Include the header file in every C file that needs to use the
shared code

• List all of the C files needed in the compiler command

Skipping some compilation steps

• If you’ve just made a change to one or two of your source
code files, it’s a waste to recompile every source file for your
program.

• The compiler will run the preprocessor, compiler, and
assembler for each source code file. Even the ones that
haven’t changed.

• And if the source code hasn’t changed, the object code
that’s generated for that file won’t change either.

• So if the compiler is generating the object code for every
file, every time, what do you need to do?

Save object code into a file

• If you tell the compiler to save the object code into a file, it
shouldn’t need to recreate it unless the source code
changes.

• If a file does change, you can recreate the object code for
that one file and then pass the whole set of object files to
the compiler so they can be linked.

Compile the source into object
files
gcc -c *.c

• This will create object code for every file.

• Option -c tells the compiler that you want to create an
object file for each source file, but you don’t want to link
them together into a full executable program.

Create executable by linking
object files
• Now that you have a set of object files, you can link them

together with a simple compile command.

• But instead of giving the compiler the names of the C source
files, you tell it the names of the object files:

gcc *.o -o launch

Recompile only file that changed

• Now you have a compiled program, just like before.

• But you also have a set of object files that are ready to be
linked together if you need them again.

• If you change just one of the files, you’ll only need to
recompile that single file and then relink the program:

gcc -c thruster.c

gcc *.o -o launch

Simple rule for recompiling
specific files
• How do you tell if the thruster.o file needs to be recompiled

from truster.c?

• You just look at the timestamps of the two files.

• If the thruster.o file is older than the thruster.c file, then
the thruster.o file needs to be recreated

• Otherwise, it’s up to date.

Automate this process with make

• The make tool will check the timestamps of the source files
and the generated files, and then it will only recompile the
files if things are out of date

• Every file that make compiles is called a target

• For every target, make needs two things:

• the dependencies - which files the target is going to be
generated from

• the recipe– the set of instructions it needs to run to
generate the file

Sample make file

launch.o: launch.c launch.h thruster.h

gcc -c launch.c

thruster.o: thruster.h thruster.c

gcc -c thruster.c

launch: launch.o thruster.o

gcc launch.o thruster.o -o launch

The recipe must
begin with a tab
character

dependencies

rule

Using make

• Save your make rules into a text file called Makefile in the
same directory

• Then, open up a console and type:

Make launch

Make has to work on teaching lab
machines!
Q: If I write a Makefile for a Windows machine, will it work on
a Mac? Or a Linux machine?

A: Because makefiles calls commands in the underlying
operating system, sometimes makefiles don’t work on
different operating systems.

Example: make with macros and variables
CC = gcc

CFLAGS = -O3 -Wall

CFLAGS += -D_LARGEFILE_SOURCE

CFLAGS += -finline-functions

CFLAGS += -funroll-loops

MATHFLAG=-lm

Source files

SC_SRC=common.c dna_common.c keyword_tree.c kmers_to_kwtree.c
count_kmers.c streamcount.c

Targets

all: streamcount

#streams the lines of the input file and counts k-mers

streamcount: $(SC_SRC)
$(CC) $(CFLAGS) $^ -o $@ ${MATHFLAG}

clean:
rm streamcount

Target: dependencies

$@ : $^

Simple make tutorial

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

